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ethanol at 80° in the presence of potassium hydroxide via domino isomerization and cyclization.
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Introduction.
Isomerization has been extensively studied to achieve

efficient and straightforward reactions in organic synthe-
sis. In connection with this report, it is known that several
transition metals such as Pd [1], Ru [2], Rh [3] and Ir [4]
isomerize propargylic alcohols to enones or enals [5]. In
addition to these reports, Minn and Kundu have reported
that 2-iodopyrimidines and 6-iodouracils are coupled with
p r o p a rgylic alcohols to give 3-heteroaryl substituted
enones under Sonogashira coupling conditions [6].
H o w e v e r, to the best of our knowledge, although sub-
strates are restricted, it was firstly reported by Cacchi that
alkyl 4-hydroxy-2-alkynoates and 4-hydroxy-2-alkyn-1-
ones were isomerized to alkyl 4-oxo-2-alkenoates and 1,4-
dioxo-2-alkenes, respectively in the presence of only trib-
utylamine [7]. Recently, Müller and Saito have further dis-
closed the isomerization of propargylic alcohols to enones
under triethylamine or triton B [8] On the other hand, a
clear-cut example for the synthesis of cyclic compounds
using this isomerization protocol seems to be limited to the
synthesis of 3,5-disubstituted 2-pyrazolines [8a] and ruthe-
nium-catalyzed synthesis of butyrolactone [9] and pyrroles
[10]. Prompted by these circumstances, we have directed
our attention to the application of this isomerization to the
synthesis of N-heterocycles. Herein we report a base-
mediated consecutive isomerization and cyclization of 3-
(2-aminophenyl)-1-arylprop-2-yn-1-ols leading to 2-
arylquinolines.

Results and Discussion.
The starting 3-(2-aminophenyl)-1-arylprop-2-yn-1-ols 1

are easily available by the known procedures shown in
Scheme 1. Aldehydes are treated with ethynylmagnesium
bromide to give propargylic alcohols [ 11] that are then
subjected to react with 2-iodoaniline under Sonogashira
coupling conditions to afford 1 [12]. Several reactions with
3-(2-aminophenyl)-1-phenylprop-2-yn-1-ol (1 a, 1: R =
Ph) under various conditions were carried out to obtain a

satisfying yield of 2-phenylquinoline (2 a, 2: R = Ph)
(Scheme 2). Our initial study was performed in the pres-
ence of a transition metal catalyst since transition metal-
catalyzed redox isomerizations of propargyl alcohols to
α,β-unsatuarted carbonyl compounds are known [1-4].
When 1 a was subjected under the conditions of
RuCl2(PPh3)3 (2 mol%)/80°/5 hours/dioxane, 2a was not
produced at all and almost all 1a was recovered unchanged
[13]. Treatment of 1 a at a higher reaction temperature
(180°) under similar conditions afforded 2 a in only 5%
yield. These results indicate that a ruthenium catalytic sys-
tem was not effective for the present reaction. However,
the addition of equimolar amount of KOH to the condi-
tions of RuCl2( P P h3)3 (2 mol%)/80°/2 hours/dioxane
afforded 2a in 72-78% yields (several runs) [14]. Eventual
reaction conditions excluded the presence of a ruthenium
catalyst from the system. Among the solvents we exam-
ined, ethanol in terms of product 2a yield revealed to be
the solvent of choice (83%; dioxane, 65%; toluene, 54%).

Having established reaction conditions, various 1 were
screened in order to investigate the reaction scope, and
several representative results are summarized in Table 1.
With 1-arylpropargylic alcohols (1a-1j) the isomerization-
cyclization products were formed in the range of 62-89%
yields (runs 1-10). The product yield was not significantly
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affected by the electronic nature of the substituent on the
aromatic ring attached to carbon bearing OH of 1 a-1 j,
whereas the position of that had some relevance to the
product yield (runs 2-4). In the reaction with 3-(2-amino-
phenyl)-1-(2-methylphenyl)prop-2-yn-1-ol (1 b), a longer
reaction time was necessary for the effective formation of
2-(2-methylphenyl)quinoline (2 b) (run 2). The reaction
proceeds likewise with heteroarylpropargylic alcohols
(1k-1m) to afford the corresponding 2-heteroaryl substi-
tuted quinolines (2k and 2l) in good yields (runs 11-12).
However, in the case of 3-(2-aminophenyl)-1-methylprop-
2-yn-1-ol (1m) the reaction resulted in several unidentifi-
able compounds without the formation of 2-m e t h y l-
quinoline (2m) and an intermediate (see Scheme 3).

Table  1
Consecutive Isomerization and Cyclization of 1 Leading to 2 [a]

Run 1 Quinoline 2 Isolated yield

1 1a R = Ph 2a 83
2 1b R = 2-MeC6H4 2b 46 (62 [b])
3 1c R = 3-MeC6H4 2c 73
4 1d R = 4-MeC6H4 2d 80
5 1e R = 4-MeOC6H4 2e 72
6 1f R = 3-MeOC6H4 2f 83
7 1g R = 2-MeOC6H4 2g 73
8 1h R = 4-FC6H4 2h 89
9 1i R = 4-ClC6H4 2i 86
10 1j R = 3,4-(MeO)2C6H3 2j 65
11 1k R = 2-furanyl 2k 35
12 1l R = 2-thienyl 2l 67
13 1m R = Me 2m 0

[a] Reaction conditions: 1 (0.5 mmol), KOH (0.5 mmol), EtOH (2 mL),
80° (bath temperature) for 7 hours; [b] For 20 hours.

As to the reaction pathway, although no intermediates
were obtained, this seems to proceed via an initial isomer-
ization of propargylic alcohol moiety of 1 to α,β-unsatu-
rated carbonyl compound followed by cyclodehydration to
give 2. It is known that this isomerization can be rational-
ized by the formation of an allenol intermediate under a
base [7,8] and a transition metal-catalyzed intramolecular
transfer hydrogenation [1-4]. We confirmed, in a separate
experiment, that 1,3-diphenylprop-2-yn-1-ol (3) was read-
ily isomerized to t r a n s-chalcone (4) in the presence of
KOH (Scheme 3) in 70% yield with concomitant forma-
tion of several unidentifiable compounds.

In summary, we have demonstrated that 3-(2-amino-
phenyl)-1-arylprop-2-yn-1-ols undergo consecutive iso-
merization and cyclization in the presence of KOH to
afford 2-arylquinolines in good yields. The present reac-
tion is a novel example leading to a cyclic compound using
a base-mediated isomerization of propargylic alcohols to
enones.

EXPERIMENTAL

1H and 13C NMR (400 and 100 MHz) spectra were recorded
on a Bruker Avance Digital 400 spectrometer using Me4Si as an
internal standard. Melting points were determined on a Thomas-
Hoover capillary melting points apparatus and are uncorrected.
The isolation of pure products was carried out via thin layer (sil-
ica gel 60 GF254, Merck) chromatography. Commercially avail-
able organic and inorganic compounds were used without further
purification except for the solvent, which was distilled by stan-
dard methods before use.

General  Procedure for  Consecutive Isomerizat ion and
Cyclization of 3-(2-Aminophenyl)-1-arylprop-2-yn-1-ols 1
Leading to 2-Arylquinolines 2.

A mixture of 3-(2-aminophenyl)-1-arylprop-2-yn-1-ol (0.5
mmol) and KOH (28 mg, 0.5 mmol) in EtOH (2 mL) was placed
in a 5 mL screw-capped vial and allowed to react at 80° for 7
hours. The reaction mixture was filtered through a short silica gel
column (ethyl acetate-chloroform mixture). Removal of the sol-
vent left a crude mixture, which was separated by TLC (ethyl
acetate-hexane mixture) to give 2-arylquinolines. Except for 2f,
2g, 2i and 2j, all products are noted in our recent report [13g].

2-(3-Methoxyphenyl)quinoline (2f).

This compound was obtained as a solid, mp 110° (petroleum
ether) (lit [15] mp 108-110°); 1H NMR (CDCl3): δ 3.90 (s, 3H),
7.00 (dd, J = 2.5 and 8.0 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.48-
7.51 (m, 1H), 7.68-7.72 (m, 2H), 7.77-7.83 (m, 3H), 8.15-8.18
(m, 2H); 13C NMR (CDCl3): δ 55.8, 113.1, 115.8, 119.5, 120.4,
126.7, 127.7, 127.9, 130.0, 130.1, 130.2, 137.2, 141.6, 148.6,
157.5, 160.6.

2-(2-Methoxyphenyl)quinoline (2g).

This compound was obtained as a pale yellow oil, (lit [16] vis-
cous oil); 1H NMR (CDCl3): δ 3.82 (s, 3H), 7.00 (dd, J = 8.0 Hz,
1H), 7.12 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.49 (t, J =
7.5 Hz, 1H), 7.68 (t, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H),
7.84-7.88 (m, 2H), 8.11 (d, J = 8.5 Hz, 1H), 8.17 (d, J = 8.0 Hz,
1H); 1 3C NMR (CDCl3): δ 55.6, 111.4, 121.2, 123.4, 126.1,
127.0, 127.4, 129.0, 129.2, 129.3, 129.4, 130.6, 131.5, 135.1,
148.3, 157.2.
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2-(4-Chlorophenyl)quinoline (2i).
This compound was obtained as a solid, mp 111-112° (hexane)

(lit [17] mp 112°); 1H NMR (CDCl3): δ 7.46-7.53 (m, 3H), 7.69-
7.73 (m, 1H), 7.77-7.80 (m, 2H), 8.08-8.18 (m, 4H); 13C NMR
( C D C l3): δ 118.5, 126.5, 127.2, 127.5, 128.8, 129.0, 129.7,
129.8, 135.5, 136.9, 138.0, 148.2, 155.9.
2-(3,4-Dimethoxyphenyl)quinoline (2j).

This compound was obtained as a solid, mp 116° (hexane) (lit
[18] mp 116-117°); 1H NMR (CDCl3): δ 3.96 (s, 3H), 4.05 (s,
3H), 6.99-7.01 (m, 1H), 7.48-7.53 (m, 1H), 7.65-7.74 (m, 2H),
7.80-7.88 (m, 3H), 8.14-8.20 (m, 2H); 1 3C NMR (CDCl3): δ
56.0, 56.1, 110.4, 111.0, 118.6, 120.2, 126.0, 127.0, 127.4, 129.5,
129.6, 132.5, 136.7, 148.2, 149.4, 150.4, 156.9.
Procedure for Isomerization of 1,3-Diphenylprop-2-yn-1-ol (3)
to trans-Chalcone (4).

A mixture of 1,3-diphenylprop-2-yn-1-ol (62 mg, 0.3 mmol)
and KOH (17 mg, 0.3 mmol) in toluene (2 mL) was placed in a 5
mL screw-capped vial and allowed to react at 80° for 1 hour. The
reaction mixture was filtered through a short silica gel column
(ethyl acetate-chloroform mixture). Removal of the solvent left a
crude mixture, which was separated by TLC (ethyl
acetate/hexane = 1/10) to give trans-chalcone (44 mg, 70%).
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